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Path Integral Computation of Lowest Order Modes
in Arbitrary-Shaped Inhomogeneous Waveguides

Vincenzo Galdi, Vincenzo Pierro, and Innocenzo M. Pinto

Abstract—A general numerical algorithm for the computa-
tion of the fundamental modes and related cutoff wavenumbers
in arbitrary shaped inhomogeneous waveguides is presented.
The method exploits a generalized Donsker-Kăc formula to ex-
press the lowest order modes in terms of asymptotic generalized
Wiener-It ô integrals, whose computation is carried out by means
of Monte Carlo methods. Comparison with known solutions and
computational budget indicate that the proposed method is indeed
accurate, versatile, as well as computationally efficient.

Index Terms—Guided waves, Monte Carlo methods, path in-
tegrals.

I. INTRODUCTION

I N THIS LETTER we try to give a hopefully comprehensive
description of a new method for the computation of the

dominant modes in -uniform inhomogeneous waveguides
having arbitrary transverse shape. The algorithm is based upon
Donsker-Kăc formula [1], well known in quantum mechanics,
but not yet properly exploited, if not at all, in electromagnetics.
Recently we proposed the use of this formula to compute
the fundamental mode in complex dielectric structures [2].
Subsequently we succeeded in extending the formula to allow
the treatment of Dirichlet or Neumann boundary conditions,
typical of metallic waveguides.

II. GENERALIZED DONSKER-KAC̆ FORMULA

An -dimensional second-order differential operator is con-
sidered on a compact subset with regular boundary

(1)

The associated scalar Helmholtz eigenvalue problem with
homogeneous Dirichlet or Neumann boundary conditions:

(2)

being a regular real function, has a discrete spectrum
of real eigenvalues [3], and associated
eigenfunctions forming an orthonormal
system in [4].
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Fig. 1. Enforcing boundary conditions on the Itô process. (a) Dirichlet
boundary conditions: path ends atx

i
(absorbing). (b) Neumann boundary

conditions: path is specularly reflected,�[(k + 1)�]g ! �0[(k + 1)�]g:

The Donsker-Kăc formula [1], used for computing the
lowest eigenvalue (eigenfunction) of the problem (2) with

and regularity-at-infinity conditions (dielectric waveguides
[2]), can be generalized toboundeddomains and Dirichlet or
Neumann boundary conditions, yielding

(3)

(4)

where is a normalization constant and the equality
holds for The symbol represents a
functional integral (expectation value [5]), on the probability
measure associated to the Itô process of initial point

generated [8] by the operator under pathabsorption
(Dirichlet boundary conditions) or pathreflection (Neumann
boundary conditions) at the boundary (see Fig. 1) [6],
[7], and is a suitableweight function.1 The Itô process

in the domain is ruled by the following
stochastic integral equation [6], [8]:

(5)

being independent one-dimensional Wiener dif-
ferentials [8].

1The weight function must be not orthogonal to the principal eigenfunction,
and for Dirichlet boundary conditions it must be zero at the boundary. The
choice of a weight function with the same symmetry properties as the sought
eigenfunction can highly improve the accuracy.

1051–8207/97$10.00 1997 IEEE



IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 7, NO. 12, DECEMBER 1997 403

Fig. 2. Double-ridge waveguide. Scaled cutoff wavelength versus scaled
ridge-width (TE fundamental mode) at variousS=b values. Continuous line:
std. solution ([11, p. 205]); markers: GDK method.

III. N UMERICAL IMPLEMENTATION AND RESULTS

The needed functional integrals can be computed without
any restriction on geometrical and/or constitutive complexity
using Monte Carlo methods [9], [10]. For conciseness, here we
limit ourselves to roughly outline the whole procedure adopted,
skipping specific questions (e.g. the choice of parameters).
More details may be found in [2]. The fundamental steps to
compute the functional integral in (3), (4) can
be summarized as follows:

1) path generation: i.e., discrete-time (step-sizeapproxi-
mation for the It̂o process involved, in the interval
with the suitable behavior at the boundary (see Fig. 1);

2) evaluation of the functional on the path;
3) iteration of the procedure and evaluation of the first- and

second-order moments where
is the total number of paths.

The functional integral can be accordingly computed as a
double limit:

(6)

Obviously, for finite values of the estimation will be
affected by: 1) a systematic error, due to the effect of time-
discretization, and 2) a statistical error [9], [10],

The confidence interval of the estimated
functional integral is thus

(7)

where depends of the sought confidence level. As a first ex-
ample of application of the Generalized Donsker-Kac̆ (hence-
forth GDK) method, we consider a homogeneous rectangular
waveguide with a double (symmetrical) ridge. For such a
structure no analytical solutions are known, but several ap-
proximations are available. One of the most popular approx-
imations (see e.g., [11]) is based on the transverse resonance
method and quasistatic conformal mapping. Fig. 2 shows the
GDK computed normalized cutoff wavelength (as a function

Fig. 3. Double-ridge waveguide. TE fundamental mode.(a = 2b = 2;
W=a = 0:3; S=b = 0:5:)

Fig. 4. Dielectric loaded rectangular waveguide.LSE11 mode dispersion
diagram (h = [k2

0
n2
1
� (�=b)2]1=2) at various values of dielectric slab

thickness. Continuous line: exact solution; markers: GDK method.

of the normalized ridge-width, at several values of the ridge
spacing) compared with those obtained from the above ap-
proximation, for the fundamental (quasi- mode. A very
good agreement is observed. Fig. 3 shows the behavior of the
corresponding eigenfunction.

As a second example we consider a rectangular waveguide
loaded with a dielectric slab (see Fig. 4). In this case ana-
lytical solutions are easily obtained by applying the transverse
resonance technique [11]. In Fig. 4 we report the exact disper-
sion curves (scaled modal parameter versus scaled free-space



404 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 7, NO. 12, DECEMBER 1997

Fig. 5. Coaxial waveguide with rounded-corner-square inner conductor.
Scaled cutoff wavelength of first TE mode versus scaled rounded-corner
radius at various values of scaled square-width.

wavenumber), together with the GDK computed values for
the fundamental LSE mode. Also in this case the observed
agreement is very good.

Finally a rather odd structure is analyzed, namely a circular
waveguide with a coaxial rounded-corner-square. Considerable
interest has been shown for such a geometry in particle
accelerators design (LHC project, [12]). In this connection,
computation of the cutoff frequency of the first TE mode rep-
resents an important issue, related to beam stability. In Fig. 5
we report the normalized cutoff wavelength as a function of the
rounded-corner radius, at several values of the square width.

In order to obtain all results above, a typical number
paths with an adaptive timestep close to

the boundary, where the evolution of the path is more critical,
elsewhere) have been used. Values of

in excess of being the estimated eigenvalue, ensure
that the limit for implied in (3) and (4) is
essentially achieved (see also [2]).

IV. COMPARISON WITH USUAL TECHNIQUES

The main merits of the proposed method as compared to
standard methods (e.g., finite elements methods [13], methods

of moments [14]), can be summarized as follows:

• very easy implementation: no need for meshing algo-
rithms and basis functions choice;

• very mild storage requirements;
• intrinsically fully parallel2;
• computational burden growingonly linearly with both

problem size (characteristic-length/wavelength)and spa-
tial embedding dimension

On the other hand, its main drawbacks are:

• lowest order modes, and scalar problems only;
• relatively slow convergency rate

As a conclusion the presented method seems particularly
suitable for the analysis of (the fundamental modes of) com-
plex structures, whenever fast computing (possibly parallel)
engines and relatively little memory are available.
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2All repeated operations (path generation, functional evaluation) can be
performed independently and so can be easily and fully distributed among
parallel processors.


