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Path Integral Computation of Lowest Order Modes
In Arbitrary-Shaped Inhomogeneous Waveguides

Vincenzo Galdi, Vincenzo Pierro, and Innocenzo M. Pinto

Abstract—A general numerical algorithm for the computa- £l(k+1)A]
tion of the fundamental modes and related cutoff wavenumbers .

in arbitrary shaped inhomogeneous waveguides is presented.
The method exploits a generalized Donsker-Ké formula to ex-
press the lowest order modes in terms of asymptotic generalized
Wiener-1t 8 integrals, whose computation is carried out by means
of Monte Carlo methods. Comparison with known solutions and
computational budget indicate that the proposed method is indeed
accurate, versatile, as well as computationally efficient.

. g(k+ 1) A]

(b)
Index Terms—Guided waves, Monte Carlo methods, path in- Fig. 1. Enforcing boundary conditions on thed Iprocess. (a) Dirichlet

tegrals. boundary conditions: path ends aj (absorbing). (b) Neumann boundary
conditions: path is specularly reflected(k + 1)A]} — £'[(k + 1)A]}

|. INTRODUCTION )
The Donsker-Ka formula [1], used for computing the

g‘ TH'.S .LETTfER we try to gr;]ivg ? ho;r)]efully compr.ehen?ivhqowest eigenvalue (eigenfunction) of the problem (2) vita=
escription of a new method for the computation of thg,. 54 regularity-at-infinity conditions (dielectric waveguides

ﬁommantb_modes mz-umforrE mho_ltrrw]ogelnequhs Wa\éeguge% , can be generalized tboundeddomains and Dirichlet or
aving arbitrary transverse shape. The algorithm is based u mann boundary conditions, yielding

Donsker-K& formula [1], well known in quantum mechanics,

but not yet properly exploited, if not at all, in electromagnetics. [ ‘T |
Recently we proposed the use of this formula to compute Eg | fIE(T1)] exp§ - ; VIE(s)] ds
the fundamental mode in complex dielectric structures [2]. log = - =
Subsequently we succeeded in extending the formula to allow E, | FIE(T)] exp _/ 2V[£(s)] ds
the treatment of Dirichlet or Neumann boundary conditions, o 0 =
typical of metallic waveguides. AL~ - T — 1)
3
Il. GENERALIZED DONSKERKAC FORMULA T
An n-dimensional second-order differential operator is con—d)l(@ ~ CE | D] exp _/0 V) ds @
sidered on a compact subsBtC R™ with regular boundary ) o )
oD, whereT’, > 11, C is a normalization constant and the equality
holds for 7,731,175 — oo. The symbol £, represents a
1, 92 .9 functional integral (expectation value [5]), on the probability
_ = (] [
L= 2 E;lb oI +;a art’ (1) measure associated to thé Iprocessé(s) of initial point

z, generated [8] by the operatdt under pathabsorption
The associated scalar Helmholtz eigenvalue problem witRirichlet boundary conditions) or patieflection (Neumann
homogeneous Dirichlet or Neumann boundary conditions: boundary conditions) at the bounda&D (see Fig. 1) [6],
[7], and f is a suitableweight function! The I process

Lo(z) — [V(z) = AN¢(z) =0, z €D, €= (&,... €, in the domainD is ruled by the following

a stochastic integral equation [6], [8]:
W)=0 o Pwy=0, zeod @ gral equation [5]. {3
an s n s
V being a regular real function, has a discrete spectrunf (s) =2+ /0 a'l§(m)] dr + Z/O V bIE(T)] dwr (5)
of real eigenvalues [3]\; < A2 < A3< ---, and associated =1
eigenfun_cti02ns¢j,j = 1,2,3,--. forming an orthonormal (4,7}, , .. . being independent one-dimensional Wiener dif-
system inL(D) [4]. ferentials [8].
Manuscript received July 23, 1997. 1The weight function must be not orthogonal to the principal eigenfunction,
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Fig. 2. Double-ridge waveguide. Scaled cutoff wavelength versus scaled § N
ridge-width (TE fundamental mode) at vario§¢b values. Continuous line: 3
std. solution ([11, p. 205]); markers: GDK method. N
3
[lIl. NUMERICAL IMPLEMENTATION AND RESULTS L5 >
s

The needed functional integrals can be computed without -
any restriction on geometrical and/or constitutive complexity
using Monte Carlo methods [9], [10]. For conciseness, here we
limit ourselves to roughly outline the whole procedure adopted,
skipping specific questions (e.g. the choice of parametersy, 3. Double-ridge waveguide. TE fundamental mogle.= 26 = 2,
More details may be found in [2]. The fundamental steps &/« = 0.3,8/b = 0.5.)
compute the functional integrdl, {g[£(-); 7]} in (3), (4) can

be summarized as follows: 7.00 T T r T T T T r
1) path generation: i.e., dlsc_rete-tlme _(step-_slaeapproxr 6_50'_ - LSE,, Mose ]
mation for the & process involved, in the intervl, 77, I Ne Mz M b a=2b.n=15, 0= 1 |
with the suitable behavior at the boundary (see Fig. 1); g0l T - ‘(a=°-E2)(;‘i-t2) 08 _

2) evaluation of the functiona} on the path; -
3) iteration of the procedure and evaluation of the first- and 550~
second-order momenjs (A, M), ua(A, M), where M © 500'_

is the total number of paths. < 7
The functional integral can be accordingly computed as a 450
double limit: i

400 - .

Egl(): Tl = lm lim (A M), (6) - -
A—0 M—oo 3.50 -

Obviously, for finite values ofA, M the estimation will be 5000 ——% . — ]

affected by: 1) a systematic error, due to the effect of time- ' 1.00 2.00 3.00 4.00 5.00

discretizationg.,s ~ O(A), and 2) a statistical error [9], [10], ko a

€stat ~ O(M~1/2). The confidence interval of the estimategtig. 4. Dielectric loaded rectangular waveguideSE;; mode dispersion

functional integral is thus diagram (h = [k2n3 — (x/b)?]'/?) at various values of dielectric slab

thickness. Continuous line: exact solution; markers: GDK method.

6(M,A) = (M,A) £ aM_l/Q[NQ(Mv A) - N%(Mv A)]I/Q

) of the normalized ridge-width, at several values of the ridge
wherea depends of the sought confidence level. As a first egPacing) compared with those obtained from the above ap-
ample of application of the Generalized DonskeiéKhaence- Proximation, for the fundamental (quabio) mode. A very
forth GDK) method, we consider a homogeneous rectangu@@od agreement is observed. Fig. 3 shows the behavior of the
waveguide with a double (symmetrical) ridge. For such @prresponding eigenfunction.
structure no analytical solutions are known, but several ap-As a second example we consider a rectangular waveguide
proximations are available. One of the most popular approwaded with a dielectric slab (see Fig. 4). In this case ana-
imations (see e.g., [11]) is based on the transverse resonalytieal solutions are easily obtained by applying the transverse
method and quasistatic conformal mapping. Fig. 2 shows ttesonance technique [11]. In Fig. 4 we report the exact disper-
GDK computed normalized cutoff wavelength (as a functiosion curves (scaled modal parameter versus scaled free-space
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of moments [14]), can be summarized as follows:

e very easy implementation: no need for meshing algo-
rithms and basis functions choice;

« very mild storage requirements;

« intrinsically fully parallef,

e computational burden growingnly linearly with both
problem size (characteristic-length/wavelengihy spa-
tial embedding dimension.

On the other hand, its main drawbacks are:

* lowest order modes, and scalar problems only;
« relatively slow convergency ratex M~1/2).
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Fig. 5. Coaxial waveguide with rounded-corner-square inner conductor.
Scaled cutoff wavelength of first TE mode versus scaled rounded-corner
radius at various values of scaled square-width.

(1]

wavenumber), together with the GDK computed values fo
the fundamental LSE mode. Also in this case the observe%
agreement is very good.

Finally a rather odd structure is analyzed, namely a circuIa[Ir3
waveguide with a coaxial rounded-corner-square. Considerab é
interest has been shown for such a geometry in particlE]
accelerators design (LHC project, [12]). In this connection[5
computation of the cutoff frequency of the first TE mode rep-
resents an important issue, related to beam stability. In Fig. [l
we report the normalized cutoff wavelength as a function of th
rounded-corner radius, at several values of the square width.

In order to obtain all results above, a typical number8!
M ~ 10° paths with an adaptive timestép ~ 107° close to  [qg]
the boundary, where the evolution of the path is more criticdk0]
A ~ 1072 elsewhere) have been used. Valuesiofl;, 7> [11
in excess of2)\1_1,)\1 being the estimated eigenvalue, ensure

that the limit for 7, 71,7» — oo implied in (3) and (4) is Hé}
essentially achieved (see also [2]).
[14]

V. COMPARISON WITH USUAL TECHNIQUES
2

As a conclusion the presented method seems particularly
suitable for the analysis of (the fundamental modes of) com-
plex structures, whenever fast computing (possibly parallel)
engines and relatively little memory are available.
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The main merits of the proposed method as comparedd(g

All repeated operations (path generation, functional evaluation) can be
formed independently and so can be easily and fully distributed among

standard methods (e.g., finite elements methods [13], methedsilel processors.



